biased measurement - meaning and definition. What is biased measurement
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is biased measurement - definition

THE CONSTANT OFFSET OF AN EXPONENT'S VALUE
Biased exponent; Characteristic (biased exponent)

Measurement in quantum mechanics         
  • Stern–Gerlach experiment: Silver atoms travelling through an inhomogeneous magnetic field, and being deflected up or down depending on their spin; (1) furnace, (2) beam of silver atoms, (3) inhomogeneous magnetic field, (4) classically expected result, (5) observed result
INTERACTION OF A QUANTUM SYSTEM WITH A CLASSICAL OBSERVER
Measurement in Quantum mechanics; Quantum measurement; Measurement of quantum entanglement; Quantum Measurement Problem; Measurement in quantum theory; Von Neumann measurement scheme; Lüders rule; Quantum measurement theory
In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. The predictions that quantum physics makes are in general probabilistic.
Measurement invariance         
STATISTICAL PROPERTY OF MEASUREMENT THAT INDICATES THAT THE SAME CONSTRUCT IS BEING MEASURED ACROSS SOME SPECIFIED GROUPS
Measurement equivalence; Factorial invariance
Measurement invariance or measurement equivalence is a statistical property of measurement that indicates that the same construct is being measured across some specified groups. For example, measurement invariance can be used to study whether a given measure is interpreted in a conceptually similar manner by respondents representing different genders or cultural backgrounds.
Measurement uncertainty         
PARAMETER CHARACTERIZING THE DISPERSION OF QUANTITY VALUES OF A MEASURAND
Measurement Uncertainty; Measuring uncertainty; Uncertainty of measurement; Type B evaluation of uncertainty; Type A evaluation of uncertainty; Interval of uncertainty; Measurement uncertainties
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a measured quantity. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.

Wikipedia

Exponent bias

In IEEE 754 floating-point numbers, the exponent is biased in the engineering sense of the word – the value stored is offset from the actual value by the exponent bias, also called a biased exponent. Biasing is done because exponents have to be signed values in order to be able to represent both tiny and huge values, but two's complement, the usual representation for signed values, would make comparison harder.

To solve this problem the exponent is stored as an unsigned value which is suitable for comparison, and when being interpreted it is converted into an exponent within a signed range by subtracting the bias.

By arranging the fields such that the sign bit takes the most significant bit position, the biased exponent takes the middle position, then the significand will be the least significant bits and the resulting value will be ordered properly. This is the case whether or not it is interpreted as a floating-point or integer value. The purpose of this is to enable high speed comparisons between floating-point numbers using fixed-point hardware.

To calculate the bias for an arbitrarily sized floating-point number apply the formula 2k−1 − 1 where k is the number of bits in the exponent.

When interpreting the floating-point number, the bias is subtracted to retrieve the actual exponent.

  • For a single-precision number, the exponent is stored in the range 1 .. 254 (0 and 255 have special meanings), and is interpreted by subtracting the bias for an 8-bit exponent (127) to get an exponent value in the range −126 .. +127.
  • For a double-precision number, the exponent is stored in the range 1 .. 2046 (0 and 2047 have special meanings), and is interpreted by subtracting the bias for an 11-bit exponent (1023) to get an exponent value in the range −1022 .. +1023.
  • For a quad-precision number, the exponent is stored in the range 1 .. 32766 (0 and 32767 have special meanings), and is interpreted by subtracting the bias for a 15-bit exponent (16383) to get an exponent value in the range −16382 .. +16383.